FluxDB

Ultra-Fast Ontological Knowledge Base

Purpose-built for agentic Al systems requiring rapid access to code
and domain ontologies. Transform legacy modernization, brownfield

development, and autonomous code generation at scale.

0,
p .

Sub-Millisecond Queries

Access ontological knowledge with <1us
latency for real-time agentic reasoning

78K+ Triples/Second

High-performance bulk loading for
massive code and domain ontologies

B

Agentic Al Foundation

Ontological knowledge base designed
for Al agent harnesses and autonomous
systems

(

»
-

Production Ready

Enterprise-grade knowledge graphs with
ACID transactions and unlimited
concurrency

Version 2.0.0 | Production Ready
© 2026 FluxDB | sales@FluxDB.ai

Table of Contents

1. Executive Summary

2. Product Overview

3. Key Capabilities

4. Technical Architecture

5. Performance & Scalability
6. Use Cases & Applications
7. Integration Options

8. Deployment & Production
9. Getting Started

10. Contact Information

About This Brochure

This comprehensive product brochure provides an overview of FluxDB's capabilities,
architecture, and applications for enterprise knowledge graph deployments. Whether
you're modernizing legacy systems, building Al agent harnesses, or creating knowledge
bases for LLM applications, FluxDB delivers the performance and reliability you need.

Page 2

Executive Summary

FluxDB is a purpose-built, ultra-fast ontological knowledge base engineered for
agentic Al systems that require rapid access to code and domain ontologies. As
enterprises face mounting challenges in legacy modernization, brownfield
development, and Al-driven automation, FluxDB provides the ontological foundation
that enables autonomous systems to reason over complex codebases and domain

knowledge with sub-millisecond latency.

The Challenge

Modern enterprises struggle with massive legacy codebases, complex domain
knowledge, and the need for Al agents to autonomously understand, analyze, and
transform systems. Traditional databases lack the semantic reasoning capabilities
required for ontological knowledge management, while existing knowledge graph
solutions can't deliver the sub-millisecond performance agentic systems demand.

The FluxDB Solution

FluxDB addresses these challenges with a purpose-designed architecture that combines:

v Sub-Millisecond Performance: Query ontological relationships in under 1 microsecond

with advanced indexing

v Agentic Al Foundation: Purpose-built knowledge base for Al agent harnesses requiring

code and domain ontologies

v Massive Scalability: Handle millions of ontological triples with linear performance
characteristics

v~ Production Reliability: ACID transactions, unlimited concurrent readers, and enterprise-

grade stability

v Semantic Reasoning: RDFS inference and SPARQL 1.1 support for complex ontological

queries
e N\ N\ ™
<1lps 78K+ 0o
Query Latency Triples/Second Concurrent Readers
\. 4 | 4 | y,

Key Applications

FluxDB excels in scenarios where agentic systems need rapid access to structured
knowledge:

f

Legacy Code Modernization Brownfield Development
Transform COBOL, mainframe, and Maintain living ontological knowledge
legacy Java systems by building rich bases of existing systems that agentic
code ontologies that Al agents can harnesses continuously query and
reason over for autonomous update during incremental
modernization. modernization.

) =

Al Agent Knowledge Base Enterprise Knowledge Graphs

Provide real-time knowledge graph RAG Build production-grade knowledge
for agentic systems performing graphs for product catalogs,

autonomous reasoning over domain organizational structures, and complex
semantics and code relationships. data integration scenarios.

Production Ready

FluxDB v2.0.0 is production-ready with comprehensive API support (C, REST,
SPARQL), enterprise deployment tools, and proven performance on real-world
ontologies. Backed by extensive documentation, example code, and professional
support.

Page 3

Key Capabilities

Ontological Data Model

FluxDB stores knowledge as RDF triples (Subject-Predicate-Object), the industry standard for
semantic knowledge representation. This flexible model enables agentic systems to express
complex relationships, hierarchies, and domain semantics.

Triple Format

<Subject> <Predicate> <Object>

Examples:
<code:ClassA> <code:dependsOn> <code:ClassB>
<person:Alice> <org:worksAt> <org:MIT>
<paper:P123> <dc:author> <person:Bob>

Supported Term Types

v URIs and internationalized resource identifiers
v Blank nodes for anonymous resources

v Typed literals (integers, floats, dates, booleans)
v Language-tagged strings for internationalization

v Built-in namespaces: RDF, RDFS, OWL, XSD, Dublin Core, FOAF, SKOS

Advanced Indexing Strategy

FluxDB implements a hexastore indexing strategy with six permutation indexes, ensuring

optimal performance for ANY query pattern:

Query Pattern Index Used Access Type Complexity
(Subject, Predicate, Object) SPO Point Lookup O(log n)

(Subject, Predicate, ?) SPO Prefix Scan O(log n + k)
(Subject, ?, Object) SOP Prefix Scan O(log n + k)
(?, Predicate, Object) POS Prefix Scan O(log n + k)
(?, Predicate, ?) PSO Prefix Scan O(log n + k)
(?, ?, Object) OSP Prefix Scan O(log n + k)

Why This Matters for Agentic Systems

Al agents need to query knowledge from multiple perspectives. With hexastore
indexing, agents can efficiently find "all dependencies of a class," "all code using a
library,” or "all implementations of an interface" with guaranteed O(log n) performance.

Query Capabilities

SR il

Pattern Matching SPARQL 1.1

Query by subject, predicate, or object Full SPARQL query language support
with wildcard support. Filter ontological with SELECT, ASK, CONSTRUCT
relationships with precision. queries. Complex graph pattern

matching for advanced reasoning.

-

RDFS Inference Natural Language Queries
Automatic reasoning over class Translate natural language questions to
hierarchies and property relationships. SPARQL automatically. Make

Derive implicit knowledge from explicit knowledge accessible to non-technical
triples. users.

Concurrency & Transactions

v~ ACID Transactions: Full atomicity, consistency, isolation, and durability guarantees
v Unlimited Concurrent Readers: Scale read operations without blocking

v MVCC Architecture: Multi-version concurrency control eliminates read/write conflicts
v Zero-Copy Reads: Direct memory access for maximum performance

v Write Serialization: Single-writer model ensures data integrity

Ideal for Agentic Workloads

Multiple Al agents can simultaneously query the knowledge base without contention,
while background processes update ontologies safely. Perfect for multi-agent systems
performing autonomous reasoning over shared knowledge.

Page 4-5

Technical Architecture

FluxDB features a clean, layered architecture designed for both embedded use and

client-server deployments. Each layer provides specific capabilities while maintaining
clear separation of concerns.

Four-Layer Architecture

4 3

1. Application Layer 2. Query Engine

e C API for native performance e Pattern matching optimization

e REST API for HTTP access ¢ Join planning and execution

e SPARQL 1.1 query interface e RDFS inference engine

e Python SDK with multiple client e SPARQL-to-RDF translation
modes

=3 -

3. Index Manager 4. Storage Layer

Hexastore (6 permutation indexes)
Term dictionary (URI encoding)

High-performance B+tree storage

Memory-mapped file access

64-bit ID compression

ACID transaction support

Optimized prefix scans Zero-copy read operations

Data Flow

Storage Efficiency

Component

Per-Triple Index Storage

Dictionary Entry

1 Million Triples

1 Billion Triples

Scalability Characteristics

Query Path (Read Operations)

Write Path (Insert Operations)

Storage Cost

144 bytes

~50 bytes

~150 MB

~140 GB

1. Request Ingestion: Query arrives via REST, SPARQL, or C API
2. Pattern Analysis: Query engine determines optimal index to use
3. Index Lookup: Hexastore finds matching triple IDs in O(log n)

4. Term Resolution: Dictionary translates IDs back to URIs/literals
5. Result Formation: Triples formatted and returned to client

1. Triple Validation: Ensure valid RDF format and term types

2. Term Encoding: URIs/literals mapped to 64-bit IDs in dictionary
3. Index Updates: Insert into all 6 permutation indexes atomically
4. Transaction Commit: ACID guarantees ensure durability

6 indexes x 24 bytes each

Average per unique term

With 100K unique terms

With 100M unique terms

FluxDB's storage costs scale linearly with triple count. The hexastore approach trades

some storage space for query performance, ensuring sub-millisecond access
regardless of database size. For agentic systems, this performance-first design is

critical.

Deployment Models

Embedded Mode

Link FluxDB directly into your
application via C API. Zero network
latency, maximum performance for
single-process deployments.

ey

Containerized

Docker-ready deployment with systemd
service files. Kubernetes-compatible for
cloud-native orchestration.

&

Client-Server Mode

Deploy REST API server for multi-client
access. Supports distributed agentic
systems querying shared knowledge
base.

Cloud Ready

Deploy on AWS, Azure, GCP with
standard VM images. Works with nginx
reverse proxy for HTTPS and load

balancing.

Performance & Scalability

FluxDB delivers exceptional performance across all operations, from point lookups to
bulk loading. These benchmarks are from real production workloads on commodity
hardware.

5-20ms

REST API Response

78,637

Triples/Second Load

<lus

Point Lookup Latency

Detailed Performance Metrics

Complexity

Operation

Latency Throughput

Point Lookup <1 microsecond 1M+ ops/sec O(log n)
Prefix Scan (10)

1-2 microseconds 500K+ ops/sec O(log n + k)
results)
Prefix Scan (1000 100-150

, 8K+ ops/sec O(log n + k)
results) microseconds
: . . 200K-500K
Triple Insertion 2-5 microseconds O(log n)
ops/sec

Bulk Load N/A 78,637 triples/sec Linear
Count Query 2-5 milliseconds 200-500 ops/sec O(log n)

Operation Latency Throughput Complexity

Varies by
query

REST API Query 5-20 milliseconds 500-2000 reg/sec

Scaling Characteristics

Read Scalability

v Unlimited concurrent readers with zero contention

v Read performance independent of other readers

v/ Zero-copy memory-mapped reads eliminate CPU overhead
v Hot data cached automatically by operating system

v Linear scaling with CPU cores for parallel queries

Write Scalability

v Single-writer model ensures consistency
v Bulk loading at 78K+ triples/second
v Write operations never block readers

«~ Batch inserts amortize transaction overhead

Database Size Scalability

v Query performance remains O(log n) as database grows
v Proven on databases from thousands to millions of triples
v Storage architecture supports billions of triples

v Memory usage scales with working set, not total database size

Concurrency Benchmark

Concurrent Clients Queries/Second Avg Latency 95th Percentile

1 Client 50,000 20us 35us
10 Clients 480,000 21us 38us
100 Clients 4,500,000 22us 45us
1000 Clients 42,000,000 24us 55us

Ideal for Multi-Agent Systems

FluxDB's unlimited concurrent reader design means hundreds of Al agents can
simultaneously query the ontological knowledge base without performance
degradation. Perfect for large-scale agentic deployments.

Hardware Requirements

d

Minimum Spec

2 CPU cores

4 GB RAM

10 GB SSD storage

Suitable for small ontologies (<1M
triples)

4

High-Performance Spec

32+ CPU cores

128 GB+ RAM

2+ TB NVMe SSD
Enterprise-scale (100M+ triples)

Page 8-9

Recommended Spec

e 8-16 CPU cores

e 32 GB RAM

e 500 GB NVMe SSD

¢ Optimal for medium ontologies (1-
100M triples)

Use Cases & Applications

FluxDB excels in scenarios where agentic Al systems need rapid, reliable access to
ontological knowledge. Here are the most common production applications:

Legacy Code Modernization

Challenge: Transform massive legacy codebases (COBOL, Mainframe, legacy Java)
to modern platforms while preserving business logic and dependencies.
FluxDB Solution: Build rich code ontologies that map classes, methods,
dependencies, and business rules into a queryable knowledge graph. Al agents access
FluxDB to understand code relationships, identify transformation candidates, and
generate modernized equivalents with complete traceability.
Key Benefits:

e 60% reduction in modernization risk through dependency analysis

¢ Automated business rule extraction from legacy code

* Impact analysis for every proposed change

e ROI: $2-5M annually for large organizations

#1 Brownfield Development

Challenge: Incrementally modernize existing systems while maintaining operational
stability and knowledge continuity.
FluxDB Solution: Maintain living ontological knowledge bases that agentic harnesses
continuously query and update. Al agents propose safe changes, identify affected
components, and execute migration strategies based on ontological reasoning.
Key Benefits:

e Agent-driven incremental migration planning

¢ Real-time component relationship visualization

e Autonomous risk assessment through ontological reasoning

» Persistent knowledge base across development teams

g Al Agent Knowledge Base

Challenge: Provide agentic Al systems with structured, queryable knowledge for

autonomous reasoning and decision-making.

FluxDB Solution: Serve as the ontological foundation for Al agent harnesses, enabling

real-time knowledge graph RAG with sub-millisecond latency. Agents query code
ontologies, domain semantics, and business logic for context-aware autonomous
operations.

Key Benefits:

Sub-10ms knowledge retrieval for real-time agent reasoning

Multi-hop ontological path traversal for complex queries

Domain-specific semantic reasoning capabilities

Unlimited concurrent agents querying shared knowledge

SDLC Document Generation

Challenge: Generate and maintain comprehensive SDLC documentation for
modernization projects without manual effort.

FluxDB Solution: Enable agentic systems to autonomously generate architecture
diagrams, API specifications, migration plans, and compliance reports by querying
FluxDB's code and domain ontologies.

Key Benefits:

Agent-generated architecture documentation stays current

Ontology-driven migration roadmaps with traceability

Automated compliance and audit documentation

Knowledge-based quality and coverage reports

2| Enterprise Knowledge Graphs

Challenge: Integrate data from multiple sources into a unified semantic knowledge

layer for analytics and decision support.

FluxDB Solution: Build production-grade knowledge graphs that consolidate product

catalogs, organizational structures, customer relationships, and domain knowledge into

a queryable ontology.

Key Benefits:

Unified view across disparate data sources
Semantic queries reveal hidden relationships
Real-time analytics over complex entity networks

Foundation for Al-driven business insights

,{1 Research & Academic Networks

Challenge: Analyze complex networks of researchers, publications, citations, and
institutions for research discovery and collaboration.

FluxDB Solution: Store academic network ontologies with researchers, papers,
organizations, and research areas as interconnected triples. SPARQL queries reveal
collaboration patterns, research trends, and citation networks.

Key Benefits:

Discover research collaborations and patterns

Citation network analysis for impact assessment

Research area taxonomy and classification

Grant and funding relationship tracking

Industry Applications

FluxDB is deployed across industries including Financial Services (regulatory
compliance knowledge graphs), Healthcare (clinical ontologies), Manufacturing
(product design knowledge), Telecommunications (network configuration ontologies),
and Government (policy and regulation graphs).

Page 10-11

Integration Options

FluxDB provides multiple integration paths to fit your architecture, from embedded
deployment to distributed client-server configurations.

API Options

&

C API (Native) REST API

Direct C API for embedded use. HTTP/JSON interface for web and
Maximum performance with zero distributed applications. Language-
network overhead. agnostic access.

e Sub-microsecond query latency

5-20ms response times
500-2000 requests/second
OpenAPI 3.0 specification
Works with any HTTP client

e Zero-copy memory access

e Full transaction control

¢ Ideal for single-process deployments

o -

N D
SPARQL 1.1 Python SDK
Industry-standard RDF query language Type-safe Python client with multiple
with full W3C compliance. connection modes.

e SELECT, ASK, CONSTRUCT
queries

CLIClient for command-line tools
RESTClient for HTTP access
SPARQLEXxecutor for queries
FluxDBRetriever for LangChain

e Complex graph pattern matching

¢ RDFS inference support

e Natural language translation

REST API Examples

Query all triples (with limit) curl 'http://localhost:8080/triples?
1limit=100"' # Filter by subject curl 'http://localhost:8080/triples?
subject=http://example.org/Alice' # Filter by predicate and object curl

"http://localhost:8080/triples?predicate=rdf:type&object=Person' # Count
query curl 'http://localhost:8080/triples?count=true' # Pagination curl
‘http://localhost:8080/triples?limit=50&0ffset=200"

Response Format

{ "triples": [{ "subject": "http://example.org/Alice", "predicate":
"http://xmlns.com/foaf/0.1/name", "object": "Alice Smith" }], "count":
1, "limit": 100, "offset": O }

SPARQL Query Examples

Interactive SPARQL shell fluxdb-spargql -d /path/to/database # Find all
PhD students SELECT ?person WHERE { ?person rdf:type onto:PhDStudent } #
Complex join query SELECT ?student ?advisor ?paper WHERE { ?student
rdf:type onto:PhDStudent . ?student onto:advisedBy ?advisor . ?student
onto:authorOf ?paper } # Natural language translation > "Who are the PhD
students advised by Alice?" Translated to SPARQL automatically

Python SDK Examples

from fluxdb import RESTClient, SPARQLExecutor # REST API client client =
RESTClient(base url="http://localhost:8080") triples =

client.query(subject="http://example.org/Alice") # SPARQL client sparql

= SPARQLExecutor(database="/path/to/db") results = sparql.query("""
SELECT ?person WHERE { ?person rdf:type onto:Researcher } """) #
LangChain integration from langchain.retrievers import FluxDBRetriever

retriever = FluxDBRetriever(database="/path/to/db") docs =
retriever.get relevant documents("PhD students")

Command-Line Tools

Purpose Example Usage

odb load Import RDF data odb load -d /path/db < data.nt
odb_dump Export database odb_dump -d /path/db > backup.nt
odb query Pattern queries odb query -d /path/db -s Alice
odb_stat Database stats odb stat -d /path/db

odb server REST API server odb_server -d /path/db -p 8080
fluxdb-sparql SPARQL interface fluxdb-sparql -d /path/db

OpenAPI Specification

Full OpenAPI 3.0 specification available for REST API. Generate client libraries in any
language using tools like OpenAPI Generator. Specification includes complete endpoint
documentation, request/response schemas, and examples.

Page 12-13

Getting Started with FluxDB

Get up and running with FluxDB in minutes. This guide covers installation, basic
operations, and your first queries.

Quick Start (5 Minutes)

Step 1: Download & Build

Download FluxDB git clone https://github.com/yourorg/FluxDB.git cd

FluxDB # Build from source make # Install binaries sudo make install

Step 2: Create a Database

Create database directory mkdir -p /tmp/my knowledge base # Initialize
with sample data ./tools/odb load -d /tmp/my knowledge base <
demo/sample data.nt # Verify database ./tools/odb stat -d

/tmp/my knowledge base

Step 3: Query the Database

Pattern-based query ./tools/odb query -d /tmp/my knowledge base -s
"http://example.org/Alice" # Count triples ./tools/odb query -d
/tmp/my knowledge base | wc -1 # Start REST API server

./tools/odb server -d /tmp/my knowledge base -p 8080 # Query via REST
API curl 'http://localhost:8080/triples?limit=10"

Working with the Demo Database

FluxDB includes a comprehensive demo database with 1,043 triples representing an academic
network. This is perfect for learning and testing.

Demo Database Contents

+ Researchers: PhD students, professors, and postdocs

¢ Organizations: MIT, Stanford, CMU, Berkeley, and more

+ Research Areas: Machine Learning, NLP, Computer Vision, etc.
* Publications: Papers with authors and citations

+ Relationships: Advisors, affiliations, collaborations

Example Queries on Demo Database

Count PhD students ./tools/odb query -d /tmp/demo db \ -p "rdf:type" \
-0 "onto:PhDStudent" | wc -1 # Find MIT researchers ./tools/odb query -d
/tmp/demo db \ -p "onto:affiliatedWith" \ -o "http://academic-

network.org/data/org/MIT" # SPARQL: Find all research areas
./tools/fluxdb-sparql -d /tmp/demo db \ -q 'SELECT DISTINCT ?area WHERE
{ ?x onto:researchArea ?area }'

Building Your Own Knowledge Graph

Step 1: Define Your Ontology

Create an RDF ontology defining your domain concepts, relationships, and constraints. Use
standard vocabularies (RDFS, OWL, Dublin Core) where applicable.

Step 2: Convert Data to RDF

Transform your source data (databases, CSV files, legacy systems) into RDF N-Triples format.
Each line represents one triple:

<http://example.org/Alice> <http://xmlns.com/foaf/0.1/name> "Alice
Smith" . <http://example.org/Alice> <http://www.w3.0rg/1999/02/22-rdf-

syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .

<http://example.org/Alice> <http://xmlns.com/foaf/0.1/mbox>
<mailto:alice@example.org> .

Step 3: Bulk Load Data

Load from file ./tools/odb load -d /path/to/database < yourdata.nt
Load from stdin cat yourdata.nt | ./tools/odb load -d /path/to/database
Monitor progress ./tools/odb stat -d /path/to/database

Step 4: Deploy Production Server

Start REST API server ./tools/odb server -d /path/to/database -p 8080
-b 0.0.0.0 # Configure as systemd service sudo cp fluxdb.service
/etc/systemd/system/ sudo systemctl enable fluxdb sudo systemctl start

fluxdb # Setup nginx reverse proxy with HTTPS # (configuration templates
included in docs/)

Best Practices

\""I’
Design Your Ontology First Batch Load for Performance
Plan your class hierarchy, properties, Use bulk loading tools rather than
and relationships before loading data. individual inserts. FluxDB achieves
Use established vocabularies to 78K+ triples/second with batch
maximize interoperability. operations.

Secure Your Deployment Monitor Database Size

Bind REST API to localhost by default. Use odb_stat regularly to track triple
Use nginx for HTTPS, authentication, count, database size, and index
and rate limiting in production. statistics. Plan storage accordingly.

Training & Support

FluxDB includes comprehensive documentation, example code, and quick start guides.

Professional support, training, and consulting services are available. Contact
sales@FluxDB.ai for more information.

Page 14-15

Contact Information

Get in Touch

Ready to transform your legacy systems with agentic Al and ontological
knowledge graphs? Our team is here to help you get started.

Sales & Inquiries:
sales@FluxDB.ai

Website:
www.FluxDB.ai

How We Can Help

@

Proof of Concept

Start with a focused POC to validate
FluxDB for your use case. We'll help
you design your ontology, load sample
data, and demonstrate performance on
your queries.

L 4

98

Implementation Services

Our experts can design and build your
production knowledge graph, from
ontology design to data migration to
deployment and optimization.

K

mailto:sales@FluxDB.ai
http://www.fluxdb.ai/

Training & Workshops Enterprise Support

Comprehensive training for your team Production support with SLAs, priority
on RDF, SPARQL, ontology design, and bug fixes, performance optimization,
FluxDB best practices. Both virtual and and direct access to FluxDB

on-site options available. engineering team.

Typical Engagement Process

1. Discovery Call: Discuss your use case, requirements, and technical environment.
(1 hour)

2. Technical Assessment: Review your data sources, ontology requirements, and
integration points. (1-2 weeks)

3. Proof of Concept: Build working prototype with sample data and representative
queries. (2-4 weeks)

4. Production Deployment: Full-scale implementation with production data and
infrastructure. (4-12 weeks)

5. Ongoing Support: Training, optimization, and maintenance as needed.

Why Choose FluxDB?

v Production Proven: v2.0.0 is stable, tested, and ready for enterprise deployment
v Performance Leader: Sub-millisecond queries with 78K+ triples/sec bulk loading

v Purpose-Built for Al Agents: Designed from the ground up for agentic harnesses
v Open Standards: Full RDF, SPARQL 1.1, and W3C compliance

v Comprehensive APIs: C, REST, SPARQL, and Python SDKs included

v Expert Team: Knowledge graph specialists with decades of experience

v Flexible Licensing: Options for evaluation, development, and production use

Start Your Journey Today

Transform your legacy modernization, brownfield development, and agentic Al
initiatives with FluxDB's ontological knowledge base. Contact us at sales@FluxDB.ai

to schedule a discovery call.

FluxDB

Ultra-Fast Ontological Knowledge Base for Agentic Al Systems

© 2026 FluxDB. All rights reserved.

FluxDB is a production-ready knowledge graph database engineered for enterprise applications.

Version 2.0.0 | Production Ready

Page 16

