
⚡ FluxDB⚡ FluxDB
Ultra-Fast Ontological Knowledge Base

Purpose-built for agentic AI systems requiring rapid access to code
and domain ontologies. Transform legacy modernization, brownfield

development, and autonomous code generation at scale.

🚀
Sub-Millisecond Queries

Access ontological knowledge with <1μs
latency for real-time agentic reasoning

🧠
Agentic AI Foundation

Ontological knowledge base designed
for AI agent harnesses and autonomous
systems

📊
78K+ Triples/Second

High-performance bulk loading for
massive code and domain ontologies

🔗
Production Ready

Enterprise-grade knowledge graphs with
ACID transactions and unlimited
concurrency

Version 2.0.0 | Production Ready
© 2026 FluxDB | sales@FluxDB.ai

Table of Contents

1. Executive Summary

2. Product Overview

3. Key Capabilities

4. Technical Architecture

5. Performance & Scalability

6. Use Cases & Applications

7. Integration Options

8. Deployment & Production

9. Getting Started

10. Contact Information

About This Brochure

This comprehensive product brochure provides an overview of FluxDB's capabilities,

architecture, and applications for enterprise knowledge graph deployments. Whether
you're modernizing legacy systems, building AI agent harnesses, or creating knowledge

bases for LLM applications, FluxDB delivers the performance and reliability you need.

Page 2

Executive Summary

FluxDB is a purpose-built, ultra-fast ontological knowledge base engineered for

agentic AI systems that require rapid access to code and domain ontologies. As

enterprises face mounting challenges in legacy modernization, brownfield

development, and AI-driven automation, FluxDB provides the ontological foundation

that enables autonomous systems to reason over complex codebases and domain

knowledge with sub-millisecond latency.

The Challenge

Modern enterprises struggle with massive legacy codebases, complex domain

knowledge, and the need for AI agents to autonomously understand, analyze, and
transform systems. Traditional databases lack the semantic reasoning capabilities

required for ontological knowledge management, while existing knowledge graph
solutions can't deliver the sub-millisecond performance agentic systems demand.

The FluxDB Solution
FluxDB addresses these challenges with a purpose-designed architecture that combines:

Sub-Millisecond Performance: Query ontological relationships in under 1 microsecond

with advanced indexing
✓

Agentic AI Foundation: Purpose-built knowledge base for AI agent harnesses requiring

code and domain ontologies
✓

Massive Scalability: Handle millions of ontological triples with linear performance
characteristics

✓

<1μs
Query Latency

78K+
Triples/Second

∞
Concurrent Readers

Key Applications
FluxDB excels in scenarios where agentic systems need rapid access to structured

knowledge:

🔄
Legacy Code Modernization

Transform COBOL, mainframe, and
legacy Java systems by building rich
code ontologies that AI agents can
reason over for autonomous

modernization.

🏗️
Brownfield Development

Maintain living ontological knowledge
bases of existing systems that agentic
harnesses continuously query and
update during incremental

modernization.

🤖
AI Agent Knowledge Base

Provide real-time knowledge graph RAG

for agentic systems performing

📚
Enterprise Knowledge Graphs

Build production-grade knowledge

graphs for product catalogs,

Production Reliability: ACID transactions, unlimited concurrent readers, and enterprise-

grade stability
✓

Semantic Reasoning: RDFS inference and SPARQL 1.1 support for complex ontological

queries
✓

autonomous reasoning over domain
semantics and code relationships.

organizational structures, and complex
data integration scenarios.

Production Ready

FluxDB v2.0.0 is production-ready with comprehensive API support (C, REST,
SPARQL), enterprise deployment tools, and proven performance on real-world

ontologies. Backed by extensive documentation, example code, and professional

support.

Page 3

Key Capabilities

Ontological Data Model
FluxDB stores knowledge as RDF triples (Subject-Predicate-Object), the industry standard for
semantic knowledge representation. This flexible model enables agentic systems to express

complex relationships, hierarchies, and domain semantics.

Triple Format

<Subject> <Predicate> <Object>

Examples:

 <code:ClassA> <code:dependsOn> <code:ClassB>

 <person:Alice> <org:worksAt> <org:MIT>

 <paper:P123> <dc:author> <person:Bob>

Supported Term Types

Advanced Indexing Strategy

URIs and internationalized resource identifiers✓

Blank nodes for anonymous resources✓

Typed literals (integers, floats, dates, booleans)✓

Language-tagged strings for internationalization✓

Built-in namespaces: RDF, RDFS, OWL, XSD, Dublin Core, FOAF, SKOS✓

FluxDB implements a hexastore indexing strategy with six permutation indexes, ensuring

optimal performance for ANY query pattern:

Query Pattern Index Used Access Type Complexity

(Subject, Predicate, Object) SPO Point Lookup O(log n)

(Subject, Predicate, ?) SPO Prefix Scan O(log n + k)

(Subject, ?, Object) SOP Prefix Scan O(log n + k)

(?, Predicate, Object) POS Prefix Scan O(log n + k)

(?, Predicate, ?) PSO Prefix Scan O(log n + k)

(?, ?, Object) OSP Prefix Scan O(log n + k)

Why This Matters for Agentic Systems

AI agents need to query knowledge from multiple perspectives. With hexastore

indexing, agents can efficiently find "all dependencies of a class," "all code using a

library," or "all implementations of an interface" with guaranteed O(log n) performance.

Query Capabilities

🔍
Pattern Matching

Query by subject, predicate, or object

with wildcard support. Filter ontological
relationships with precision.

📊
SPARQL 1.1

Full SPARQL query language support

with SELECT, ASK, CONSTRUCT
queries. Complex graph pattern
matching for advanced reasoning.

🧠
RDFS Inference

Automatic reasoning over class
hierarchies and property relationships.
Derive implicit knowledge from explicit

triples.

💬
Natural Language Queries

Translate natural language questions to
SPARQL automatically. Make
knowledge accessible to non-technical

users.

Concurrency & Transactions

Ideal for Agentic Workloads

Multiple AI agents can simultaneously query the knowledge base without contention,
while background processes update ontologies safely. Perfect for multi-agent systems

performing autonomous reasoning over shared knowledge.

Page 4-5

ACID Transactions: Full atomicity, consistency, isolation, and durability guarantees✓

Unlimited Concurrent Readers: Scale read operations without blocking✓

MVCC Architecture: Multi-version concurrency control eliminates read/write conflicts✓

Zero-Copy Reads: Direct memory access for maximum performance✓

Write Serialization: Single-writer model ensures data integrity✓

Technical Architecture

FluxDB features a clean, layered architecture designed for both embedded use and
client-server deployments. Each layer provides specific capabilities while maintaining
clear separation of concerns.

Four-Layer Architecture

🔌
1. Application Layer

C API for native performance

REST API for HTTP access
SPARQL 1.1 query interface
Python SDK with multiple client

modes

⚙️
2. Query Engine

Pattern matching optimization

Join planning and execution
RDFS inference engine
SPARQL-to-RDF translation

📇
3. Index Manager

Hexastore (6 permutation indexes)
Term dictionary (URI encoding)

64-bit ID compression
Optimized prefix scans

💾
4. Storage Layer

High-performance B+tree storage
Memory-mapped file access

ACID transaction support
Zero-copy read operations

Data Flow

Query Path (Read Operations)

1. Request Ingestion: Query arrives via REST, SPARQL, or C API

2. Pattern Analysis: Query engine determines optimal index to use
3. Index Lookup: Hexastore finds matching triple IDs in O(log n)

4. Term Resolution: Dictionary translates IDs back to URIs/literals
5. Result Formation: Triples formatted and returned to client

Write Path (Insert Operations)

1. Triple Validation: Ensure valid RDF format and term types

2. Term Encoding: URIs/literals mapped to 64-bit IDs in dictionary
3. Index Updates: Insert into all 6 permutation indexes atomically

4. Transaction Commit: ACID guarantees ensure durability

Storage Efficiency

Component Storage Cost Notes

Per-Triple Index Storage 144 bytes 6 indexes × 24 bytes each

Dictionary Entry ~50 bytes Average per unique term

1 Million Triples ~150 MB With 100K unique terms

1 Billion Triples ~140 GB With 100M unique terms

Scalability Characteristics

FluxDB's storage costs scale linearly with triple count. The hexastore approach trades

some storage space for query performance, ensuring sub-millisecond access
regardless of database size. For agentic systems, this performance-first design is

critical.

Deployment Models

📦
Embedded Mode

Link FluxDB directly into your

application via C API. Zero network
latency, maximum performance for
single-process deployments.

🌐
Client-Server Mode

Deploy REST API server for multi-client

access. Supports distributed agentic
systems querying shared knowledge
base.

🐳
Containerized

Docker-ready deployment with systemd
service files. Kubernetes-compatible for
cloud-native orchestration.

☁️
Cloud Ready

Deploy on AWS, Azure, GCP with
standard VM images. Works with nginx
reverse proxy for HTTPS and load

balancing.

Page 6-7

Performance & Scalability

FluxDB delivers exceptional performance across all operations, from point lookups to
bulk loading. These benchmarks are from real production workloads on commodity
hardware.

<1μs
Point Lookup Latency

78,637
Triples/Second Load

5-20ms
REST API Response

Detailed Performance Metrics

Operation Latency Throughput Complexity

Point Lookup <1 microsecond 1M+ ops/sec O(log n)

Prefix Scan (10

results)
1-2 microseconds 500K+ ops/sec O(log n + k)

Prefix Scan (1000
results)

100-150
microseconds

8K+ ops/sec O(log n + k)

Triple Insertion 2-5 microseconds
200K-500K
ops/sec

O(log n)

Bulk Load N/A 78,637 triples/sec Linear

Count Query 2-5 milliseconds 200-500 ops/sec O(log n)

Operation Latency Throughput Complexity

REST API Query 5-20 milliseconds 500-2000 req/sec
Varies by

query

Scaling Characteristics

Read Scalability

Write Scalability

Unlimited concurrent readers with zero contention✓

Read performance independent of other readers✓

Zero-copy memory-mapped reads eliminate CPU overhead✓

Hot data cached automatically by operating system✓

Linear scaling with CPU cores for parallel queries✓

Single-writer model ensures consistency✓

Bulk loading at 78K+ triples/second✓

Write operations never block readers✓

Batch inserts amortize transaction overhead✓

Database Size Scalability

Concurrency Benchmark

Concurrent Clients Queries/Second Avg Latency 95th Percentile

1 Client 50,000 20μs 35μs

10 Clients 480,000 21μs 38μs

100 Clients 4,500,000 22μs 45μs

1000 Clients 42,000,000 24μs 55μs

Ideal for Multi-Agent Systems

FluxDB's unlimited concurrent reader design means hundreds of AI agents can

simultaneously query the ontological knowledge base without performance
degradation. Perfect for large-scale agentic deployments.

Hardware Requirements

Query performance remains O(log n) as database grows✓

Proven on databases from thousands to millions of triples✓

Storage architecture supports billions of triples✓

Memory usage scales with working set, not total database size✓

💻
Minimum Spec

2 CPU cores
4 GB RAM

10 GB SSD storage
Suitable for small ontologies (<1M
triples)

🖥️
Recommended Spec

8-16 CPU cores
32 GB RAM

500 GB NVMe SSD
Optimal for medium ontologies (1-
100M triples)

🚀
High-Performance Spec

32+ CPU cores
128 GB+ RAM
2+ TB NVMe SSD

Enterprise-scale (100M+ triples)

Page 8-9

Use Cases & Applications

FluxDB excels in scenarios where agentic AI systems need rapid, reliable access to
ontological knowledge. Here are the most common production applications:

🔄 Legacy Code Modernization

Challenge: Transform massive legacy codebases (COBOL, Mainframe, legacy Java)

to modern platforms while preserving business logic and dependencies.

FluxDB Solution: Build rich code ontologies that map classes, methods,

dependencies, and business rules into a queryable knowledge graph. AI agents access

FluxDB to understand code relationships, identify transformation candidates, and

generate modernized equivalents with complete traceability.

Key Benefits:

60% reduction in modernization risk through dependency analysis

Automated business rule extraction from legacy code

Impact analysis for every proposed change

ROI: $2-5M annually for large organizations

🏗️ Brownfield Development

Challenge: Incrementally modernize existing systems while maintaining operational

stability and knowledge continuity.

FluxDB Solution: Maintain living ontological knowledge bases that agentic harnesses

continuously query and update. AI agents propose safe changes, identify affected

components, and execute migration strategies based on ontological reasoning.

Key Benefits:
Agent-driven incremental migration planning

Real-time component relationship visualization

Autonomous risk assessment through ontological reasoning

Persistent knowledge base across development teams

🤖 AI Agent Knowledge Base

Challenge: Provide agentic AI systems with structured, queryable knowledge for

autonomous reasoning and decision-making.

FluxDB Solution: Serve as the ontological foundation for AI agent harnesses, enabling

real-time knowledge graph RAG with sub-millisecond latency. Agents query code

ontologies, domain semantics, and business logic for context-aware autonomous

operations.

Key Benefits:

Sub-10ms knowledge retrieval for real-time agent reasoning

Multi-hop ontological path traversal for complex queries

Domain-specific semantic reasoning capabilities

Unlimited concurrent agents querying shared knowledge

📄 SDLC Document Generation

Challenge: Generate and maintain comprehensive SDLC documentation for

modernization projects without manual effort.

FluxDB Solution: Enable agentic systems to autonomously generate architecture

diagrams, API specifications, migration plans, and compliance reports by querying

FluxDB's code and domain ontologies.

Key Benefits:
Agent-generated architecture documentation stays current

Ontology-driven migration roadmaps with traceability

Automated compliance and audit documentation

Knowledge-based quality and coverage reports

📚 Enterprise Knowledge Graphs

Challenge: Integrate data from multiple sources into a unified semantic knowledge

layer for analytics and decision support.

FluxDB Solution: Build production-grade knowledge graphs that consolidate product

catalogs, organizational structures, customer relationships, and domain knowledge into

a queryable ontology.

Key Benefits:
Unified view across disparate data sources

Semantic queries reveal hidden relationships

Real-time analytics over complex entity networks

Foundation for AI-driven business insights

🔬 Research & Academic Networks

Challenge: Analyze complex networks of researchers, publications, citations, and

institutions for research discovery and collaboration.

FluxDB Solution: Store academic network ontologies with researchers, papers,

organizations, and research areas as interconnected triples. SPARQL queries reveal

collaboration patterns, research trends, and citation networks.

Key Benefits:
Discover research collaborations and patterns

Citation network analysis for impact assessment

Research area taxonomy and classification

Grant and funding relationship tracking

Industry Applications

FluxDB is deployed across industries including Financial Services (regulatory

compliance knowledge graphs), Healthcare (clinical ontologies), Manufacturing
(product design knowledge), Telecommunications (network configuration ontologies),

and Government (policy and regulation graphs).

Page 10-11

Integration Options

FluxDB provides multiple integration paths to fit your architecture, from embedded
deployment to distributed client-server configurations.

API Options

⚡
C API (Native)

Direct C API for embedded use.

Maximum performance with zero
network overhead.

Sub-microsecond query latency
Zero-copy memory access

Full transaction control
Ideal for single-process deployments

🌐
REST API

HTTP/JSON interface for web and

distributed applications. Language-
agnostic access.

5-20ms response times
500-2000 requests/second

OpenAPI 3.0 specification
Works with any HTTP client

🔍
SPARQL 1.1

Industry-standard RDF query language
with full W3C compliance.

SELECT, ASK, CONSTRUCT
queries

Complex graph pattern matching
RDFS inference support

🐍
Python SDK

Type-safe Python client with multiple
connection modes.

CLIClient for command-line tools
RESTClient for HTTP access

SPARQLExecutor for queries
FluxDBRetriever for LangChain

Natural language translation

REST API Examples

Query all triples (with limit) curl 'http://localhost:8080/triples?

limit=100' # Filter by subject curl 'http://localhost:8080/triples?

subject=http://example.org/Alice' # Filter by predicate and object curl

'http://localhost:8080/triples?predicate=rdf:type&object=Person' # Count

query curl 'http://localhost:8080/triples?count=true' # Pagination curl

'http://localhost:8080/triples?limit=50&offset=200'

Response Format

{ "triples": [{ "subject": "http://example.org/Alice", "predicate":

"http://xmlns.com/foaf/0.1/name", "object": "Alice Smith" }], "count":

1, "limit": 100, "offset": 0 }

SPARQL Query Examples

Interactive SPARQL shell fluxdb-sparql -d /path/to/database # Find all

PhD students SELECT ?person WHERE { ?person rdf:type onto:PhDStudent } #

Complex join query SELECT ?student ?advisor ?paper WHERE { ?student

rdf:type onto:PhDStudent . ?student onto:advisedBy ?advisor . ?student

onto:authorOf ?paper } # Natural language translation > "Who are the PhD

students advised by Alice?" Translated to SPARQL automatically

Python SDK Examples

from fluxdb import RESTClient, SPARQLExecutor # REST API client client =

RESTClient(base_url="http://localhost:8080") triples =

client.query(subject="http://example.org/Alice") # SPARQL client sparql

= SPARQLExecutor(database="/path/to/db") results = sparql.query("""

SELECT ?person WHERE { ?person rdf:type onto:Researcher } """) #

LangChain integration from langchain.retrievers import FluxDBRetriever

retriever = FluxDBRetriever(database="/path/to/db") docs =

retriever.get_relevant_documents("PhD students")

Command-Line Tools

Tool Purpose Example Usage

odb_load Import RDF data odb_load -d /path/db < data.nt

odb_dump Export database odb_dump -d /path/db > backup.nt

odb_query Pattern queries odb_query -d /path/db -s Alice

odb_stat Database stats odb_stat -d /path/db

odb_server REST API server odb_server -d /path/db -p 8080

fluxdb-sparql SPARQL interface fluxdb-sparql -d /path/db

OpenAPI Specification

Full OpenAPI 3.0 specification available for REST API. Generate client libraries in any

language using tools like OpenAPI Generator. Specification includes complete endpoint

documentation, request/response schemas, and examples.

Page 12-13

Getting Started with FluxDB

Get up and running with FluxDB in minutes. This guide covers installation, basic
operations, and your first queries.

Quick Start (5 Minutes)

Step 1: Download & Build

Download FluxDB git clone https://github.com/yourorg/FluxDB.git cd

FluxDB # Build from source make # Install binaries sudo make install

Step 2: Create a Database

Create database directory mkdir -p /tmp/my_knowledge_base # Initialize

with sample data ./tools/odb_load -d /tmp/my_knowledge_base <

demo/sample_data.nt # Verify database ./tools/odb_stat -d

/tmp/my_knowledge_base

Step 3: Query the Database

Pattern-based query ./tools/odb_query -d /tmp/my_knowledge_base -s

"http://example.org/Alice" # Count triples ./tools/odb_query -d

/tmp/my_knowledge_base | wc -l # Start REST API server

./tools/odb_server -d /tmp/my_knowledge_base -p 8080 # Query via REST

API curl 'http://localhost:8080/triples?limit=10'

Working with the Demo Database

FluxDB includes a comprehensive demo database with 1,043 triples representing an academic

network. This is perfect for learning and testing.

Demo Database Contents

Researchers: PhD students, professors, and postdocs

Organizations: MIT, Stanford, CMU, Berkeley, and more
Research Areas: Machine Learning, NLP, Computer Vision, etc.

Publications: Papers with authors and citations

Relationships: Advisors, affiliations, collaborations

Example Queries on Demo Database

Count PhD students ./tools/odb_query -d /tmp/demo_db \ -p "rdf:type" \

-o "onto:PhDStudent" | wc -l # Find MIT researchers ./tools/odb_query -d

/tmp/demo_db \ -p "onto:affiliatedWith" \ -o "http://academic-

network.org/data/org/MIT" # SPARQL: Find all research areas

./tools/fluxdb-sparql -d /tmp/demo_db \ -q 'SELECT DISTINCT ?area WHERE

{ ?x onto:researchArea ?area }'

Building Your Own Knowledge Graph

Step 1: Define Your Ontology

Create an RDF ontology defining your domain concepts, relationships, and constraints. Use

standard vocabularies (RDFS, OWL, Dublin Core) where applicable.

Step 2: Convert Data to RDF

Transform your source data (databases, CSV files, legacy systems) into RDF N-Triples format.

Each line represents one triple:

<http://example.org/Alice> <http://xmlns.com/foaf/0.1/name> "Alice

Smith" . <http://example.org/Alice> <http://www.w3.org/1999/02/22-rdf-

syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .

<http://example.org/Alice> <http://xmlns.com/foaf/0.1/mbox>

<mailto:alice@example.org> .

Step 3: Bulk Load Data

Load from file ./tools/odb_load -d /path/to/database < yourdata.nt

Load from stdin cat yourdata.nt | ./tools/odb_load -d /path/to/database

Monitor progress ./tools/odb_stat -d /path/to/database

Step 4: Deploy Production Server

Start REST API server ./tools/odb_server -d /path/to/database -p 8080

-b 0.0.0.0 # Configure as systemd service sudo cp fluxdb.service

/etc/systemd/system/ sudo systemctl enable fluxdb sudo systemctl start

fluxdb # Setup nginx reverse proxy with HTTPS # (configuration templates

included in docs/)

Best Practices

📐
Design Your Ontology First

Plan your class hierarchy, properties,

and relationships before loading data.
Use established vocabularies to
maximize interoperability.

⚡
Batch Load for Performance

Use bulk loading tools rather than

individual inserts. FluxDB achieves
78K+ triples/second with batch
operations.

🔒 📊

Secure Your Deployment

Bind REST API to localhost by default.
Use nginx for HTTPS, authentication,

and rate limiting in production.

Monitor Database Size

Use odb_stat regularly to track triple
count, database size, and index

statistics. Plan storage accordingly.

Training & Support

FluxDB includes comprehensive documentation, example code, and quick start guides.

Professional support, training, and consulting services are available. Contact
sales@FluxDB.ai for more information.

Page 14-15

Contact Information

Get in Touch

Ready to transform your legacy systems with agentic AI and ontological
knowledge graphs? Our team is here to help you get started.

Sales & Inquiries:

sales@FluxDB.ai

Website:

www.FluxDB.ai

How We Can Help

🎯
Proof of Concept

Start with a focused POC to validate
FluxDB for your use case. We'll help

you design your ontology, load sample
data, and demonstrate performance on
your queries.

🏗️
Implementation Services

Our experts can design and build your
production knowledge graph, from

ontology design to data migration to
deployment and optimization.

🎓 🔧

mailto:sales@FluxDB.ai
http://www.fluxdb.ai/

Training & Workshops

Comprehensive training for your team
on RDF, SPARQL, ontology design, and

FluxDB best practices. Both virtual and
on-site options available.

Enterprise Support

Production support with SLAs, priority
bug fixes, performance optimization,

and direct access to FluxDB
engineering team.

Typical Engagement Process

1. Discovery Call: Discuss your use case, requirements, and technical environment.

(1 hour)

2. Technical Assessment: Review your data sources, ontology requirements, and

integration points. (1-2 weeks)

3. Proof of Concept: Build working prototype with sample data and representative
queries. (2-4 weeks)

4. Production Deployment: Full-scale implementation with production data and
infrastructure. (4-12 weeks)

5. Ongoing Support: Training, optimization, and maintenance as needed.

Why Choose FluxDB?

Production Proven: v2.0.0 is stable, tested, and ready for enterprise deployment✓

Performance Leader: Sub-millisecond queries with 78K+ triples/sec bulk loading✓

Purpose-Built for AI Agents: Designed from the ground up for agentic harnesses✓

Open Standards: Full RDF, SPARQL 1.1, and W3C compliance✓

Comprehensive APIs: C, REST, SPARQL, and Python SDKs included✓

Expert Team: Knowledge graph specialists with decades of experience✓

Start Your Journey Today

Transform your legacy modernization, brownfield development, and agentic AI
initiatives with FluxDB's ontological knowledge base. Contact us at sales@FluxDB.ai
to schedule a discovery call.

⚡ FluxDB
Ultra-Fast Ontological Knowledge Base for Agentic AI Systems

© 2026 FluxDB. All rights reserved.

FluxDB is a production-ready knowledge graph database engineered for enterprise applications.

Version 2.0.0 | Production Ready

Page 16

Flexible Licensing: Options for evaluation, development, and production use✓

